-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
enable option to calculate geometric invariants using rockit interface
- Loading branch information
1 parent
e5b9fe1
commit 750f932
Showing
6 changed files
with
4,671 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# Example for calculating invariants from a long trial of position data. | ||
|
||
import pandas as pd | ||
from mpl_toolkits.mplot3d import Axes3D | ||
from invariants_py.calculate_invariants.rockit_calculate_vector_invariants_position import OCP_calc_pos | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from invariants_py.reparameterization import reparameterize_positiontrajectory_arclength | ||
from invariants_py.data_handler import find_data_path | ||
|
||
# Load the CSV file | ||
df = pd.read_csv(find_data_path('trajectory_long.csv')) | ||
|
||
# Plot xyz coordinates with respect to timestamp | ||
plt.figure() | ||
plt.plot(df['timestamp'], df['x'], label='x') | ||
plt.plot(df['timestamp'], df['y'], label='y') | ||
plt.plot(df['timestamp'], df['z'], label='z') | ||
plt.xlabel('Timestamp') | ||
plt.ylabel('Coordinates') | ||
plt.legend() | ||
plt.title('XYZ Coordinates with respect to Timestamp') | ||
plt.show() | ||
|
||
# Plot the trajectory in 3D | ||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d') | ||
ax.plot(df['x'], df['y'], df['z']) | ||
ax.set_aspect('equal') | ||
ax.set_xlabel('X') | ||
ax.set_ylabel('Y') | ||
ax.set_zlabel('Z') | ||
ax.set_title('3D Trajectory') | ||
plt.show() | ||
|
||
# Prepare the trajectory data | ||
trajectory = np.column_stack((df['x'], df['y'], df['z'])) | ||
timestamps = df['timestamp'].values | ||
stepsize = np.mean(np.diff(timestamps)) | ||
|
||
# Downsample the trajectory to 100 samples | ||
downsampled_indices = np.linspace(0, len(trajectory) - 1, 200, dtype=int) | ||
trajectory = trajectory[downsampled_indices]/1000 # Convert to meters | ||
timestamps = timestamps[downsampled_indices] | ||
stepsize = np.mean(np.diff(timestamps)) | ||
|
||
# Reparameterize the trajectory based on arclength | ||
# Note: The reparameterization is not necessary if the data size is within the limit | ||
trajectory, arclength, arclength_n, nb_samples, stepsize = reparameterize_positiontrajectory_arclength(trajectory) | ||
|
||
# Use the standard approach if the data size is within the limit | ||
ocp = OCP_calc_pos(window_len=len(trajectory),fatrop_solver=True,geometric=True) | ||
invariants, reconstructed_trajectory, moving_frames = ocp.calculate_invariants(trajectory, stepsize) | ||
|
||
# Plot the calculated invariants as subplots | ||
fig, axs = plt.subplots(3, 1, figsize=(10, 8)) | ||
|
||
axs[0].plot(timestamps, invariants[:, 0], label='Invariant 1') | ||
axs[0].plot(0, 0, label='Invariant 1') | ||
axs[0].set_xlabel('Timestamp') | ||
axs[0].set_ylabel('Invariant 1') | ||
axs[0].legend() | ||
axs[0].set_title('Calculated Geometric Invariant 1') | ||
|
||
axs[1].plot(timestamps, invariants[:, 1], label='Invariant 2') | ||
axs[1].set_xlabel('Timestamp') | ||
axs[1].set_ylabel('Invariant 2') | ||
axs[1].legend() | ||
axs[1].set_title('Calculated Geometric Invariant 2') | ||
|
||
axs[2].plot(timestamps, invariants[:, 2], label='Invariant 3') | ||
axs[2].set_xlabel('Timestamp') | ||
axs[2].set_ylabel('Invariant 3') | ||
axs[2].legend() | ||
axs[2].set_title('Calculated Geometric Invariant 3') | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
# Plot reconstructed trajectory versus original trajectory | ||
plt.figure() | ||
plt.plot(timestamps, trajectory[:, 0], label='Original x') | ||
plt.plot(timestamps, trajectory[:, 1], label='Original y') | ||
plt.plot(timestamps, trajectory[:, 2], label='Original z') | ||
plt.plot(timestamps, reconstructed_trajectory[:, 0], label='Reconstructed x') | ||
plt.plot(timestamps, reconstructed_trajectory[:, 1], label='Reconstructed y') | ||
plt.plot(timestamps, reconstructed_trajectory[:, 2], label='Reconstructed z') | ||
plt.xlabel('Timestamp') | ||
plt.ylabel('Coordinates') | ||
plt.legend() | ||
plt.title('Original and Reconstructed Trajectory') | ||
plt.show() | ||
|
||
# Plot the reconstructed trajectory in 3D | ||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d') | ||
ax.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2]) | ||
ax.plot(reconstructed_trajectory[:, 0], reconstructed_trajectory[:, 1], reconstructed_trajectory[:, 2]) | ||
ax.set_aspect('equal') | ||
ax.set_xlabel('X') | ||
ax.set_ylabel('Y') | ||
ax.set_zlabel('Z') | ||
ax.set_title('Reconstructed 3D Trajectory') | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.